粗抛的目的是去除工件表面较大的披锋、毛刺和刮伤等,这一阶段应具有大的抛光速率,粗抛形成的表层损伤是次要的考虑,不过也应当尽可能小。抛光机抛光时,试样磨面与抛光盘应相对对平行并均匀地轻压在抛光盘上,注意防止试样飞出和因压力太大而产生新磨痕。抛光技术是金属表面处理的关键技术之一,抛光无论是在传统产业还是在电子数码产业中是不可或缺的生产步骤。
抛光液的温度越低,材料的去除速度越快。低温条件下材料的去除速度快主要是因为: 温度越低,抛光液被蒸发需要吸收的热量就越多,相同条件下生成的气体越少,包围在零件周围的混合气体层越薄,而在压强和电压不变的情况下,气体变薄就意味着电场强度增大,导致碰撞电离系数显著增大,虽然总的碰撞距离减小,但仍然有更多的电子冲击到工件表面,材料的去除速度当然更快。但在抛光液低温情况下,混合气体层较薄,也意味着气体层不太稳定,等离子抛光过程中断并转变一般电解的的可能性越大,同时气体层薄也意味着系统的电阻减小,电流增大,且电流值大幅度变化,常常引起零件尖锐部位烧蚀等现象,这对复杂形状零件和大尺寸零件来说特别明显。 随着抛光液温度的提高,等离子纳米抛光过程开始稳定,90-100属于理想加工温度范围,在这一范围内材料的去除速度虽然不是快,却更容易获得更好的表面质量。温度继续升高将导致抛光液气化增强,混合气层温度升高厚度增加,加工时间也相应延长。当抛光液温度达到95-99°C时,等离子加工过程转到泡沫状态。抛光液沸腾,蒸气气层失去自身的尺寸和形状整个零件处于连续移动的泡沫中,其电阻与等离子理想加工状态的气层电阻值相比大大提高,此时被加工表面电流也会减小。
如何提高等离子体的生成、控制和稳定性,以实现更高的抛光效率和质量,以及更低的能耗和成本。 如何扩大等离子抛光技术的适用范围,以实现对更多种类、形状、尺寸的工件的抛光,以及对更多领域和行业的应用。 如何解决等离子抛光技术的环境和安全问题,如如何减少废液的排放和处理,如何避免电磁干扰和噪音等。 如何提高等离子抛光技术的智能化和自动化水平,以实现对抛光过程的实时监测、调节和优化,以及对抛光结果的评估和反馈。 如何加强等离子抛光技术的理论和实验研究,以揭示等离子抛光过程中发生的复杂的物理、化学、电化学、热力学等机理,以及对工件表面性能的影响规律。
您好,欢迎莅临八溢,欢迎咨询...
触屏版二维码 |